Gould Plaza: Electrical Redesign

Background Information

The $27,360 \mathrm{sq}$. ft. plaza consists of benches and tress for social gathering. Gould plaza is surrounded by Tisch Hall, Weaver Hall, and the Kaufman Center. The space is used to provide a relaxing environment for students to interact.

Lighting Design

The lighting design encompasses a mixture of light poles, light rails, step lights, downlights, and custom ingrade NYU logo. The backlit NYU logo is created to reinforce the NYU school identity and pride. The lighting in Gould Plaza focuses on light the entrance/exits of the surrounding buildings to provide a safe environment for students to walk at night.

Electrical Design

The electrical redesign involves dividing the lighting into different zones. Instead of creating a new panelboard for the outdoor lighting, the lighting loads will share the same panelboard as the Tisch Lobby lighting. A total of 9 circuits will be designed for this space.

Existing Panel LP1A (includes revised Lobby lighting)

PANELBOARDES												
VOLTAGE: 277/480,3PH,4W SIZE/TYPE BUS: 100A SIZE/TYPE MAIN: 100A/3P C/B			PANEL TAG: LP1A PANEL LOCATION: ELEC CLOSET PANEL MOUNTING: SURFACE							MIN. C/B AIC: OPTIONS:		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Lighting	LOBBY	216	20A/1P	1	*			2	20A/1P	180	LOBBY	Lighting
Lighting	LOBBY	180	20A/1P	3		*		4	20A/1P	180	LOBBY	Lighting
Lighting	LOBBY	216	20A/1P	5			*	6	20A/1P	252	LOBBY	Lighting
Lighting	LOBBY	546	20A/1P	7	*			8	20A/1P	546	LOBBY	Lighting
Lighting	LOBBY	184	20A/1P	9		*		10	20A/1P	1521	LOBBY	Lighting
Lighting	LOBBY	975	20A/1P	11			*	12	20A/1P	81	LOBBY	Lighting
Lighting	PLAZA	1073	20A/1P	13	*			14	20A/1P	260	PLAZA	Lighting
Lighting	PLAZA	312	20A/1P	15		*		16	20A/1P	480	PLAZA	Lighting
Lighting	PLAZA	459	20A/1P	17			*	18	20A/1P	234	PLAZA	Lighting
Lighting	PLAZA	180	20A/1P	19	*			20	20A/1P	459	PLAZA	Lighting
Lighting	PLAZA	392	20A/1P	21		*		22	20A/1P	0		
		0	20A/1P	23			*	24	20A/1P	0		
		0	20A/1P	25	*			26	20A/1P	0		
		0	20A/1P	27		*		28	20A/1P	0		
		0	20A/1P	29			*	30	20A/1P	0		
		0	20A/1P	31	*			32	20A/1P	0		
		0	20A/1P	33		*		34	20A/1P	0		
		0	20A/1P	35			*	36	20A/1P	0		
PNL RP-1A	LOBBY	9080	80/3P	37	*			38	20A/1P	0	0	0
PNL RP-1A	LOBBY	8980	-	39		*		40	20A/1P	0	0	0
PNL RP-1A	LOBBY	9020	-	41			*	42	20A/1P	0		
CONNECTED LOAD	(KW) - A	12.54								TOTAL DESIGN	OAD (KW)	43.21
CONNECTED LOAD	(KW) - B	12.23								POWER FACTO		0.80
CONNECTED LOA	(KW) - C	11.24								TOTAL DESIGN	OAD (AMPS)	65

Revised Panel LP1A

Electrical Panel

Default Power Factor $=\quad 0.80$
Default Demand Factor $=1.00$

Lutron Control

LUTRON DIMMING CONTROL PANEL 2				LOCATION: LEVEL 1		
ZONE	IXTURE TYP	VOLTAGE	SOURCE		LOAD VA	CONTROL
1	L5A	277	NORMAL	LP1A-1	216	GRAFIK 3000
2	L5A	277	NORMAL	LP1A-2	180	GRAFIK 3000
3	L5A	277	NORMAL	LP1A-3	180	GRAFIK 3000
4	L5A	277	NORMAL	LP1A-4	180	GRAFIK 3000
5	L5A	277	NORMAL	LP1A-5	216	GRAFIK 3000
6	L5A, L5B	277	NORMAL	LP1A-6	252	GRAFIK 3000
7	L8	277	NORMAL	LP1A-7	184	GRAFIK 3000
8	L4	277	NORMAL	LP1A-8	546	GRAFIK 3000
9	L4	277	NORMAL	LP1A-9	546	GRAFIK 3000
10	L7	277	NORMAL	LP1A-10	1521	GRAFIK 3000
11	L2	277	NORMAL	LP1A-11	975	GRAFIK 3000
12	L6	277	NORMAL	LP1A-12	81	GRAFIK 3000

Gould Plaza Circuiting

Electrical Plan
*Larger lighting plan can be found in Appendix I : E101

Feeder Sizing

Design Load: 54.2A
Design Load with 20% spare: 65 A
Protection Device for Feeder: 85A
Wires: (4) \#4
21/2"CU THW

Tisch Lobby: Electrical Redesign

The 3535 sq. ft lobby consists of various walkways that leads to the various compartments in the building. The two revolving doors and side doors are the entrance and exits of the building. The center of the lobby consists of stairs leading to the upper and lower concourse of the building. At the sides of the lobby, hallways lead to the computer labs and classrooms of the building. The elevator lobby is located at the south of the lobby with stairwells that lead to the upper and lower floors of the building.

Lighting Design

The lighting design encompasses a mixture of downlights, wallwashers, recessed fluorescent lamps, and pendants. The main objective of the lighting design is to use light as a guide to lead people to the various compartments in the building. At each entrance or walkway, a linear fluorescent is recessed into the wall to provide as a guide. The custom pendants at the center of the lobby lead occupants down to the lower level.

Electrical Design

The lighting in the lobby is divided into different zones. Daylight sensors will be incorporated into the design for dimming when sufficient daylight is available. The Lutron Grafik control system will help control the two lighting zones, daytime zone and nighttime zone light. A total of 12 circuits are in this space.

Existing Panel LP1A

PANELBOARD S S CHED												
VOLTAGE: 277/480,3PH,4W SIZE/TYPE BUS: 100A SIZE/TYPE MAIN: 100A/3P C/B			PANEL TAG: LP1A PANEL LOCATION: ELEC CLOSET PANEL MOUNTING: SURFACE							MIN. C/B AIC: OPTIONS:		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Lighting	LOBBY	648	20A/1P	1	*			2	20A/1P	720	LOBBY	Lighting
Lighting	LOBBY	546	20A/1P	3		*		4	20A/1P	108	LOBBY	Lighting
Lighting	LOBBY	546	20A/1P	5			*	6	20A/1P	975	LOBBY	Lighting
Lighting	LOBBY	184	20A/1P	7	*			8	20A/1P	0	0	0
0	0	0	20A/1P	9		*		10	20A/1P	0	0	0
0	0	0	20A/1P	11			*	12	20A/1P	0	0	0
		0	20A/1P	13	*			14	20A/1P	0		
		0	20A/1P	15		*		16	20A/1P	0		
		0	20A/1P	17			*	18	20A/1P	0		
		0	20A/1P	19	*			20	20A/1P	0		
		0	20A/1P	21		*		22	20A/1P	0		
		0	20A/1P	23			*	24	20A/1P	0		
		0	20A/1P	25	*			26	20A/1P	0		
		0	20A/1P	27		*		28	20A/1P	0		
		0	20A/1P	29			*	30	20A/1P	0		
		0	20A/1P	31	*			32	20A/1P	0		
		0	20A/1P	33		*		34	20A/1P	0		
		0	20A/1P	35			*	36	20A/1P	0		
PNL RP-1A	LOBBY	9080	80/3P	37	*			38	20A/1P	0	0	0
PNL RP-1A	LOBBY	8980	-	39		*		40	20A/1P	0	0	0
PNL RP-1A	LOBBY	9020	-	41			*	42	20A/1P	0		
CONNECTED LOAD CONNECTED LOA CONNECTED LOA	$\begin{aligned} & (\mathrm{KW})-\mathrm{A} \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \end{aligned}$	$\begin{array}{r} 10.63 \\ 9.63 \\ 10.54 \end{array}$								TOTAL DESIGN POWER FACTOR TOTAL DESIGN	OAD (KW) OAD (AMPS)	$\begin{array}{r}36.97 \\ 0.80 \\ 56 \\ \hline\end{array}$

Revised Panel LP1A

Electrical Panel

Lobby - Different Control Modes

For the daytime mode, lights will be dimmed to save power and use daylight to provide illumination to the space.

For the nighttime mode, all of the lights will be on

Daytime Mode

Dimming will be determined by the daylight sensor.

Power Plan

Nighttime Mode

All lighting will be on.

Power Plan

Lutron Controls

LUTRON DIMMING CONTROL PANEL 2					LOCATION: LEVEL 1	
ZONE	FIXTURE TYPE	Voltage	SOURCE	CIRCUIT NO.	LOAD VA	CONTROL
1	L13,L18	277	NORMAL	EXT 1-1	216	GRAFIK 3000
2	L17	277	NORMAL	EXT 1-2	180	GRAFIK 3000
3	L16	277	NORMAL	EXT 1-3	180	GRAFIK 3000
4	L14	277	NORMAL	EXT 1-4	180	GRAFIK 3000
5	L15,L17	277	NORMAL	EXT 1-5	216	GRAFIK 3000
6	L16	277	NORMAL	EXT 1-6	252	GRAFIK 3000
7	L12	277	NORMAL	EXT 1-7	184	GRAFIK 3000
8	L12, L11	277	NORMAL	EXT 1-8	546	GRAFIK 3000
9	L9, L10	277	NORMAL	EXT 1-9	546	GRAFIK 3000

Lobby Circuiting

Eletrical Plan
*Larger lighting plan can be found in Appendix I : E201

Feeder Sizing

Design Load: 48.4A
Design Load with 20% spare: 58A
Feeder Protection Device: 60A
Wire Size: (4) \#4
21/2", CU THW

Classroom: Electrical Redesign

The 1324 sq. ft classroom has a seating capacity of 73 occupants. The classroom is divided into five tiers. At the front of the room, there are three white boards, with the side white boards have a sliding component which can be adjusted into a projection screen. The ceiling are 2'x2' armstrong panels. The materials in the classroom are dry wall with an eggshell finish to it.

Lighting Design

The lighting design encompasses a mixture of downlights, wallwashers, and wall sconces. The main objective of the lighting design is to provide sufficient light levels on the reading/writing surface of the student desks as well as the white boards at the front of the classroom. At the same time, the wall sconces will provide visual interest on the side walls of the classroom.

Electrical Design

The lighting in the classroom is divided into different zones. The control is based on the Lutron 3000 Grafik control system. A total of two lighting zones will be designed for the classroom: presentation and general lecture mode. There will be a total of 6 circuits in the room.

PANEL SCHEDULE												
VOLTAGE	277/480	3PH, 4W	TAG							TYPE PANEL		
MOUNTING	SURFACE		LP4-UC1A							C/B MIN AIC		FEED
SIZE/TYPE BUS SIZEITYPE MAINS	100 AMPS A FRAME		LOCATION ELEC. CLOSET UC19							OPTIONS/ACCESSRS		
LOAD				POS								
DESCRIPTION	LOCA	WATTS	SIZE	NO	$\begin{array}{r} \mathrm{A} \\ \mathrm{PH} \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{B} \\ \mathrm{PH} \\ \hline \end{array}$	CH	NO	SIZE	WATTS	LOCATION	DESCRIPTION
Lighting	UC14-LTG	1800	20A	1	*			2	20A	1700.0	LVPUC - R1,2,3,5	Low voltage lighting control
Lighting	UC15-LTG	1300	20A	3		*		4	20A	1160.0	LVPUC - R4,6,7,8	Low voltage lighting control
Lighting	UC17-LTG	1400	20A	5			*	6	20A	1160.0	LVPUC - R9, 10	Low voltage lighting control
Lighting	UC18-LTG	2100	20A	7	*			8	20A	950.0	LVPUC - R11,12	Low voltage lighting control
				9		*		10	20A	1050.0	LTG TOILET/CP CENTER	Lighting
				11			*	12	20A	1400.0	LVPUC-R13,14,15,16,17	Low voltage lighting control
				13	*			14	20A	600.0	LVPUC - R18,19	Low voltage lighting control
				15		*		16				
				17			*	18				
				19	*			20				
				21		*		22				
				23			*	24				
				25	*			26				
				27		*		28				
				29			*	30				
				31	*			32				
				33		*		34				
				35			*	36				
				37	*			38				
				39		*		40				
				41			*	42				
SUB-TOTAL	A PHASE	7150.		PHASE						3510.0	C PHASE	3960.0
TOTAL CONNECTED LOAD (WATTS)		14620.0									DEMAND LOAD	13158.0

Existing Panel LP4-UC1A

$\begin{aligned} & \text { VOLTAGE: } 277 / 480,3 \mathrm{PH}, 4 \mathrm{~W} \\ & \text { SIZE/TYPE BUS: } 100 \mathrm{~A} \\ & \text { SIZE/TYPE MAIN: } 100 \mathrm{~A} / 3 \mathrm{P} \text { C/B } \end{aligned}$			PANEL TAG: LP4-UC1A PANEL LOCATION: ELEC CLOSET UC19 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: PROVIDE FEED THR FOR PANELBOARD 1		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	D
Lighting	UC18	180	20A/1P	1	*			2	20A/1P	180	UC18	
Lighting	UC18	612	20A/1P	3		*		4	20A/1P	273	UC18	
Lighting	UC18	669	20A/1P	5			*	6	20A/1P	1800	UC14	
Lighting	UC15	1300	20A/1P	7	*			8	20A/1P	1400	UC17	
Low volt light control	-VPUC-R1,2,3,5	1700	20A/1P	9		*		10	20A/1P	1160	LVPUC-R4,6,7,8	Low
Low volt light control	LVPUC-R9,10	1160	20A/1P	11			*	12	20A/1P	950	LVPUC-R11,12	Low
Lighting	TOILET	1050	20A/1P	13	*			14	20A/1P	1400	UC-R13,14,15,1	Low
Low volt light control	LVPUC-R18,19	600	20A/1P	15		*		16	20A/1P	0		
		0	20A/1P	17			*	18	20A/1P	0		
		0	20A/1P	19	*			20	20A/1P	0		
		0	20A/1P	21		*		22	20A/1P	0		
		0	20A/1P	23			*	24	20A/1P	0		
		0	20A/1P	25	*			26	20A/1P	0		
		0	20A/1P	27		*		28	20A/1P	0		
		0	20A/1P	29			*	30	20A/1P	0		
		0	20A/1P	31	*			32	20A/1P	0		
		0	20A/1P	33		*		34	20A/1P	0		
		0	20A/1P	35			*	36	20A/1P	0		
0	0	0	20A/1P	37	*			38	20A/1P	0	0	
0	0	0	20A/1P	39		*		40	20A/1P	0	0	
0	0	0	20A/1P	41			*	42	20A/1P	0		
CONNECTED LOAD CONNECTED LOAD CONNECTED LOAD	$\begin{aligned} & (\mathrm{KW})-\mathrm{A} \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \end{aligned}$	$\begin{aligned} & 5.51 \\ & 4.35 \\ & 4.58 \end{aligned}$								TOTAL DESIGN POWER FACTO TOTAL DESIGN	LOAD (KW) LOAD (AMPS)	

Electrical Panel

Classroom - Different Control Modes

For the general mode, all of the lighting in the room will be turned on.
For the presentation mode, the first row of downlights will dim to 20%, followed by the second row of downlights dim to 50%, and the rest of the downlights at 70%. The wall washers and wall sconces will be turned off.

General mode

No Dimming for any of the luminaires in the space.

reflected ceiling plan

Presentation Mode
$\square 20 \%$ Dimming
$\square 50 \%$ Dimming
$\square 70 \%$ Dimming

reflected ceiling plan

Lutron Light Control

LUTRON DIMMING CONTROL PANEL 1			LOCATION: LEVEL 1			
ZONE	FIXTURE TYPE	Voltage	SOURCE	CIRCUIT NO.	LOAD VA	CONTROL
1	L1A	277	NORMAL	LP4-UC1A-1	180	GRAFIK 3000
2	L1A	277	NORMAL	LP4-UC1A-2	180	GRAFIK 3000
3	L1A, L2B	277	NORMAL	LP4-UC1A-3	612	GRAFIK 3000
4	L2A	277	NORMAL	LP4-UC1A-4	273	GRAFIK 3000
5	L3	277	NORMAL	LP4-UC1A-5	669	GRAFIK 3000

Classroom Circuiting

*Larger lighting plan can be found in Appendix I : E301

Feeder Sizing
Design Load: 118A
Design Load with 20\% spare: 142A
Feeder Protection Device: 150A
Wire Size: (4)\#1/0
2" CU THW

MBA Student Lounge: Electrical Redesign

Background Information

The MBA student lounge is located in the upper concourse of Tisch Hall. The student lounge is used as a place for students to do work and relax. The 2,100 sq.ft space is divided into four sections, a pantry in the back, computer counter and lounge area, tables area, and another lounge area in the front.

Lighting Design

The lighting consist a combination of wallwashers, recessed fluorescents, LEDs, and surface mount luminaires. The objective of the lighting design is to provide a relaxing and pleasant atmosphere for students to enjoy.
\qquad

Electrical Design

The electrical design involves dividing up the lighting into 5 zones with 5 switches. The lounge does not need any dimming. A total of 5 circuits will be designed for this space.

Existing Panel RPSA (includes revised Lobby lighting)

PANELBOARD SCHEDLE												
VOLTAGE: 120/208,3PH,4W SIZE/TYPE BUS: 100A SIZE/TYPE MAIN: 100A/3P C/B			PANEL TAG: RPSA SEC. 2 PANEL LOCATION: ELEC CLOSET PANEL MOUNTING: SURFACE							MIN. C/B AIC: OPTIONS:		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Furniture Feed	UC31	1000	20A/1P	43	*			44	20A/1P	1000	UC31	Furniture Feed
Furniture Feed	UC31	1000	20A/1P	45		*		46	20A/1P	1000	UC31	Furniture Feed
Furniture Feed	UC31	1000	20A/1P	47			*	48	20A/1P	1000	UC31	Furniture Feed
Furniture Feed	UC31	1000	20A/1P	49	*			50	20A/1P	1000	UC31	Furniture Feed
Furniture Feed	UC31	1000	20A/1P	51		*		52	20A/1P	1000	UC31	Furniture Feed
Furniture Feed	UC31	1000	20A/1P	53			*	54	20A/1P	1000	UC31	Furniture Feed
WAP Rec	UC31	200	20A/1P	55	*			56	20A/1P	0	0	0
WAP Rec	UC31	200	20A/1P	57		*		58	20A/1P	0	0	0
WAP Rec	UC31	200	20A/1P	59			*	60	20A/1P	0		
		0	20A/1P	61	*			62	20A/1P	0		
		0	20A/1P	63		*		64	20A/1P	0		
Lighting	UC31	248	20A/1P	65			*	66	20A/1P	0		
Lighting	UC31	144	20A/1P	67	*			68	20A/1P	502	UC31	Lighting
Lighting	UC31	1031	20A/1P	79		*		70	20A/1P	253	UC31	Lighting
		0	20A/1P	71			*	72	20A/1P	0		
		0	20A/1P	73	*			74	20A/1P	0		
		0	20A/1P	75		*		76	20A/1P	0		
		0	20A/1P	77			*	78	20A/1P	0		
0	0	0	80/3P	79	*			80	20A/1P	0	0	0
0	0	0	-	81		*		82	20A/1P	0	0	0
0	0	0	-	83			*	84	20A/1P	0	0	
CONNECTED LOAD	(KW) - A	4.85								TOTAL DESIGN	OAD (KW)	17.73
CONNECTED LOA	(KW) - B	5.48								POWER FACTO		0.80
CONNECTED LOAD	(KW) - C	4.45								TOTAL DESIGN	OAD (AMPS)	62

Revised Panel RPSA

MBA Lounge Circuiting

Electrical Plan
*Larger lighting plan can be found in Appendix : E401

Feeder Sizing

Design Load: 48.4A
Design Load with 20% spare: 58A
Feeder Protection Device: 60A
Wire Size: (4)\#4-2 1/2" CU THWN

Backup Generator Design: Electrical Breadth

The current electrical system of Tisch Hall does not contain a backup generator. The current emergency generator is located in another building. Electrical Depth 1 proposes the installation of a backup generator that will supply power to the Ground, Upper, and Lower Concourse of Tisch Hall. The backup generator will need to supply power to the emergency lighting system, elevator shaft, security, and fire alarm system.
Electrical depth 1 will involve picking out a backup generator to supply adequate emergency power to Tisch Hall. The study also involves finding a location for the backup generator to be placed.

Emergency Loads

Overall Emergency Load	
Load	$33832 ~ W$ $33.83 ~ k W ~$
Design with 20\% Spare	40.60 kW

Emergency Lighting Load							
Type	\mathbf{L}	UC	LC	Sum	Lamp Description	Watt	Total Watt
L38		12		12	$37 \mathrm{MR16/IR} / \mathrm{NFL} / \mathrm{C}$	87	1044
L27			6	6	$37 \mathrm{MR16/IR/NFL/CFPC40/830}$	46	276
L47			2	2	CF32DT/E/IN/830	36	72
L1B	2	12	8	22	(2) FP21/830/ECO	48	1056
L24K			42	42	FP28/830/ECO	32	1344
L24L			12	12	FP28/830/ECO	32	384
L24		29		29	FP28/830/ECO	32	928
L24C		10		10	FP28/830/ECO	32	320
L16			11	11	CF26DT/E/IN/830	29	319
L25		16	6	22	FP28/830/ECO	33	726
L4			5	5	CF32DT/E/IN/830	36	180
L31			6	6	CF32DT/E/IN/830	36	216
L6B			1	1	CF26DT/E/IN/830	29	29
L6A		5	8	13	CF26DT/E/IN/830	29	377
L6		2		2	CF26DT/E/IN/830	29	58
L9C	14			14	MP50/C/U/MED	58	812
L23B	6			6	CDM70/PAR38/FL/3K/	78	468
L50	4			4	FP28/830/ECO	33	132
L12A	2			2	CMH39PAR20/FL	45	90
L28		12		12	CF32DT/E/IN/830	46	552
L28C		1		1	CF32DT/E/IN/830	46	46
L28A		8		8	CF32DT/E/IN/830	46	368
L46		3		3	CMH39/UPAR20/FL25	23	69
L15		12		12	FP28/830/ECO	33	396

Other Loads				
Type	Description	Total Watt		
Traction Elevator	30 hp elevator	22370		
Fire Alarm System				
Security		Total		
				200

Emergency Panelboard Schedule

PANELBOARDSCHEDUE												
VOLTAGE: 277/480,3PH,4W SIZE/TYPE BUS: 1000A SIZE/TYPE MAIN: 1000A/3P C/B			PANEL TAG: EMR-1 PANEL LOCATION: ELEC CLOSET UC19 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: PROVIDE FEED THROUGH LUGS FOR PANELBOARD 1L1B		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Lighting	UC	2868	20A/1P	1	*			2	20A/1P	1000	All Level	Security
Lighting	LC	3634	20A/1P	3		*		4	20A/1P	200	All Level	Fire Alarm System
Lighting	UC	2606	20A/1P	5			*	6	20A/1P	1598	Level 1	Lighting
Elevator	All Level	7457	20A/1P	7	*			8	20A/1P	0	0	0
Elevator	All Level	7457	20A/1P	9		*		10	20A/1P	0	0	0
Elevator	All Level	7457	20A/1P	11			*	12	20A/1P	0	0	0
0	0	0	20A/1P	13	*			14	20A/1P	0	0	0
0	0	0	20A/1P	15		*		16	20A/1P	0		0
0		0	20A/1P	17			*	18	20A/1P	0		
		0	20A/1P	19	*			20	20A/1P	0		
		0	20A/1P	21		*		22	20A/1P	0		
		0	20A/1P	23			*	24	20A/1P	0		
		0	20A/1P	25	*			26	20A/1P	0		
		0	20A/1P	27		*		28	20A/1P	0		
		0	20A/1P	29			*	30	20A/1P	0		
		0	20A/1P	31	*			32	20A/1P	0		
		0	20A/1P	33		*		34	20A/1P	0		
		0	20A/1P	35			*	36	20A/1P	0		
		0	20A/1P	37	*			38	20A/1P	0		
		0	20A/1P	39		*		40	20A/1P	0		
		0	20A/1P	41			*	42	20A/1P	0		
CONNECTED LOAD CONNECTED LOAD CONNECTED LOA	$\begin{aligned} & \text { (KW) - A } \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \end{aligned}$	$\begin{aligned} & 11.33 \\ & 11.29 \\ & 11.66 \end{aligned}$								TOTAL DESIGN POWER FACTO TOTAL DESIGN	OAD (KW) OAD (AMPS)	41.13 0.05 977

Emergency Panelboard

Proposal Site for Backup Generator

The existing space in Tisch Hall has no room for a backup generator and a fuel tank to be placed. A proposal to create an electrical room next to the men's room in the upper concourse would be an ideal location. The electrical room would hold both the backup generator and fuel tank. A fuel pipe line would then link the fuel tank to an outdoor fuel station at the corner of West 3rd Street and Mercer Street. If fuel is needed, fuel truck can make a stop to fuel up the tank.

The electrical room would be located between columns H and J which should provide sufficient space needed. There is no proposal to erect new columns or beams to support the room since there is already an existing structural system in place.

Proposal Site for Backup Generator

Proposed fuel stop behind Tisch Hall

Proposed fuel stop location

Corner of West 3rd Street and Mercer

Proposal Site for Backup Generator

The backup generator supplies power when the building power system turns off. The emergency panel sends signals to the automatic transfer switch to utilize the backup generator.

The emergency panel will be in the new electrical room. The automatic transfer switch will be located in electrical closet UC04.

Proposed Generator System

Generator:
4BT3.3 Series Engine - DGHE

Transfer Switch:

Transfer Switch OTEC Open
Fuel Tank
Enclosures and Tanks 230-500W
*Information on generator can be found in Appendix E.

Proposed Electrical Room

Photovoltaic Analysis: Electrical Breadth

New York City is one of the largest cities in the world. The city is a big consumer of electricity compared to many cities. In recent years, New York City has focused on reducing the environmental impact. A study conducted in 2004 estimated that by 2008, New York City would need an extra 3,780 MW of electricity. The city is promoting new initiatives with energy efficient systems to provide electricity and enhance the quality of life for residents in New York City.

In the 2004 New York City Energy Policy prepared by the New York City Energy Policy Task Force, the city encourages various methods of energy efficiency to increase electricity resources. Renewable energy technologies such as solar photovoltaic panels are encouraged to increase the diversity of energy sources away from heavy reliance on fossil fuels.

The New York University Concourse Project involves the renovation of the business campus. This electrical breadth study will explore the possibility for NYU to install photovoltaic panels to see if it is economical and beneficial. The study will look at potential places to mount photovoltaic panels. Also, a model of the NYU campus and surrounding buildings will be constructed to see if any of the surrounding buildings will block any sunlight on the rooftop of the NYU building. Last, the analysis will look at the financial benefits of installing photovoltaic panels.

Areas in orange are proposed sites for installation of photovoltaic panels.

Equinox
September 21 \& March 21

NYU buildings in darker gray.
The NYU buildings are Weaver Hall, Tisch Hall, and Kaufman Center.

During the equinox, the surrounding buildings does not block any sunlight on the NYU buildings.

Summer Solstice
June 21

NYU buildings in darker gray.

The NYU buildings are Weaver Hall, Tisch Hall, and Kaufman Center.

During the summer solstice, the sun is at the highest point. The surrounding buildings does not shade the rooftop of the NYU buildings.

Winter Solstice
December 21

NYU buildings in darker gray.
The NYU buildings are Weaver Hall, Tisch Hall, and Kaufman Center.

During the winter solstice, the sun is at the lowest point. Again, the surrounding buildings do not shade the NYU buildings.

For this study, the BP solar SX3200 is selected to perform the calculations. The BP solar SX3200 is small and produces up to 200W of electricity per panel. The maximum power generated is 278 kW . With rooftops of Weaver Hall, Tisch Hall, and the Kaufman Center utilized, a total of 21057 sq.ft. of space can be installed with photovoltaic panels. A total of 1392 panels is proposed.

PHOTO ARRAY ANALYSIS	
Location	New York City
Coordinates	$40: 40: 11 \mathrm{~N} 73: 56: 38 \mathrm{~W}$
Resource Assessment	Fixed
Solar Tracking Mode	45°
Slope	315°
Azimuth	BP Solar
Photovoltaic	bp solar SX 3200
Manufacture	9%
Model	$45^{\circ} \mathrm{C}$
Efficiency	$33293 \mathrm{sq} . \mathrm{ft}$.
Nominal Operating Temperatt	10%
Solar Collecting Area	
Miscellaneous Losses	

PHOTO ARRAY MOUNTING SPACE	
Space	Area (sq.ft)
Weaver Hall	6256
Ticsh Hall	1900
Kaufman Center	19919
Total Space	28075
75% of space used	21056
Photo Array	$15.125 \mathrm{sq} . \mathrm{ft}$
Area per photo array	1392
Number of Panels	278,430
Power Generated (W)	278 kW
Power Generated	

[^0]
Grants

There are a number of economic incentive programs provided to help support photovoltaic systems. Some of these programs provide tax cut and state rebates to help pay for the photovoltaic panels.

NYSERDA - PV Incentive Program

The New York State Energy Research and Development Authority provide incentives of $\$ 2-\$ 5$ per watt (DC) for installation of approved photovoltaic systems. For school, the maximum capacity supported is $\$ 5 / \mathrm{W}$ up to a maximum of 25 kW per site meter. Incentives will only be available to eligible installers. New York University will quality for the program since Consolidated Edison Company of New York is one of the eligible utilities. Since the NYU photovoltaic panels will produce a maximum of 278 kW of power, the incentive will only cover about 10% of the cost.

- Incentive Type: State Rebate Program
- Eligible Renewable/Other Technologies: Photovoltaic
- Applicable Status: Institutions
- Incentive Amount: \$2-\$5/watt DC
- Eligible System Size: Schools: 25 kW per site meter
- Program Budget: $\$ 38.8$ million (2008-2009)
- Potential Incentive: $\$ 125,000$

NYSERDA - PV Incentive Program

New York State Energy Research and Development Authority (NYSERDA):
Peak Load Reduction Program
The Peak Load Reduction Program aims to reduce demand for electricity during peak periods. The incentive applies for PV systems of 20 kilowatts in size or larger. The performance based incentive targets applications which can reduce energy usage. These include lighting, hvac, chiller, commercial refrigeration, and kitchen equipment and motor loads that would apply for NYU.

- Incentive Type: Peak Load Reduction Program
- Eligible Renewable/Other Technologies: Photovoltaic
- Applicable Status: Institutions
- Incentive Amount: Up to 65% of cost, depends on type of load reducing technology
- Eligible System Size: PV systems 20 kilowatts in size or bigger, depend on load reducing technology
- Program Budget: $\$ 37$ million (through June 2008)
- Potential Incentive: Depend on load reducing technology

Grants

New York Green Building Tax Credit Program: Corporate and Personal Tax Credits

The New York State passed the green building tax credit in 2000. The green building tax credit applies to owners eligible for building which meet certain 'green standards'. These green standards include increase energy efficiency, improve air quality, and reduce environmental impacts of large commercial buildings. The photovoltaic panels installed at NYU would quality for this program since it strives to produce green energy and help reduce environmental impact.

- Incentive Type: Tax Credit Reduction
- Eligible Renewable/Other Technologies: Photovoltaic
- Applicable Status: Institutions
- Incentive Amount: Varies with project, up to maximum of $\$ 2$ million
- Eligible System Size: Photovoltaic Program Budget: Program expire at end of 2009

New York City - Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures

The State of New York City enacted legislation to allow property tax abatements for photovoltaic systems for cities with a population over 1 million. NYU would certainly quality for the program.

- Incentive Type: Property Tax Assessment
- Eligible Renewable/Other Technologies: Photovoltaic. System must be located in city with a population of at least 1 million.
- Applicable Status: Institutions
- Incentive Amount: Installed from August 8, 2008 to December 31, 2010: 8.75\% of system
expenditures per year for 4 years (total of 35%).
- Maximum incentive is $\$ 62,5000$ annually.
- Eligible System Size: Program expires on Dec 31, 2012

Grants

NYSERDA - Energy \$mart New Construction Program

The Energy \$mart New Construction Program promotes energy efficient and renewable-energy resource in commercial, industrial, institutional, and family buildings. This program might qualify for NYU. It seems that the program is more directed towards energy efficiency of certain qualified equipment. The program description is a little vague so NYU may be able to qualify for this program.

- Incentive Type: State Rebate Program
- Eligible Renewable/Other Technologies: Passive Solar Space Heat, Geothermal Heat Pumps, Daylighting
- Applicable Status: Institutions
- Incentive Amount: 50-75 \% incremental costs, up to $\$ 1.65$ million for Con Edison customers
- Eligible System Size: $\$ 24$ million, up to March 31, 2009

Solar Energy Systems Property Tax Exemption

For this program, the property needs to contain a solar, wind, or farm energy system. The systems needs to be approved by the State Energy Research and Development Authority. The property will be specialty assessed to see if it fits the requirement of the building. NYU has a potential chance to be eligible for this program.

- Incentive Type: Property Tax Exemption
- Eligible Renewable/Other Technologies: Photovoltaic Panels
- Applicable Status: Institutions/Commercial
- Incentive Amount: 15 year exemption
- Eligible System Size:

PHOTOVOLTAIC POWER SYSTEM		
SYSTEM COMPONENTS	Material Cost	Installation Cost
PV modules, 200W, 24.5V	$1,834,800$	116,760
Mounting frame	333,600	31,970
Steel angle support	6,116	144,782
wire	4,670	5,671
AC Disconnect switch	15,707	7,061
Fuses	1,877	1,168
Module connection	1,112	8,896
Combiner box	4,921	3,892
Utility connection	7,645	2,516
Amp fuses	3,350	3,892
Enclosure	111,200	31,275
Inverter	202,245	23,352
Conduit w/fittings \& support	11,231	27,077
DC Disconnect switch	29,190	8,618
Cost	$\$ 2,567,664$	
		$\$ 416,931$
Location Factor (New York City)	1.09	
Total Sum	$\$ 3,253,208$	

*based on RS Means System D5090 4300100 Photovoltaic Power System. This estimation is based on a grid connected 10 kW system. An adjustment factor of 27.8 has being incorporated to adjust the cost for the NYU system.

Grants

The grants are not guaranteed to go through. Of the six incentive programs, four of them have a high chance of obtaining financial support. The other two will depend on the criteria judged by the city officials. It is estimated that the grant sum would total $\$ 1,430,200$.

GRANT AND INCENTIVES FOR PHOTOVOLTIC SYSTEM		
Grant	Incentive (\$)	
NYSERDA - PV Incentive Program	125,000	
NYSERDA - Peak Load Reduction Program	$2,114,585$ (assume 65\% of cost)	
New York State Tax Credit Program	200,000 (assumed)	
New York City Property Tax Abatement for PV	250,000 (max 4 yrs)	
NYSERDA - Energy Ssmart New Construction	Depends on energy efficient technology	
Solar Energy Systems Property Tax Exemption	Need to be approved by NYSERDA	
Grant Amount		

POWER CONSUMPTION			
Building Type: College Building - Classroom Building 12VA/sq.ft	Area	VA/sq.ft	kW
Power Consumption in building	70,000	12	840
Cost per kWH (\$)	ENERGY EXPORT	Total Demand Cost	
12.74	Energy Produced (MWH)	$\$ 38,328$	

[^1] Monday through Friday, 8AM-10 PM rate. Data from May 2008

Financial Analysis

\% Cumulative cash flows graph

Year

FINANCIAL ANALYSIS	
Financial Parameters	5%
Inflation Rate	30
Project Life	$\$ 3,253,208$
Initial Cost	$\$ 2,689,585$
Incentives and grants	$\$ 38,328$
Annual savings and income	2.60%
Pre-tax IRR - assets	
	14.7
Simple payback	

The photovoltaic system is able to generate 278 kW of energy, which is equivalent to about $1 / 3$ of the power consumed in Tisch Hall? The payback period for the photovoltaic system is 14.7 years with simple payback. If the six incentive programs can be utilized to the maximum, it would be ideal to install the photovoltaic system. At the current price, it would be very expensive to install the photovoltaic system. If the institution will not be renovated for another 15 years, then the photovoltaic system would be recommend.

Overcurrent Protection Device Coordination Study \& Fault Current Analysis

The protective device coordination study involves addressing a single path through the distribution system. The three devices analyzed are the utility transformer, main service co-gen panel, and panelboard DP4-LCMECH-B.

Time current curves of 15A, 225A, and 2000A circuit breakers were overlaid on one graph. The 15A circuit breaker will trip first, followed by the 225A breaker, and then the 2000A circuit breaker.

Fault Current Analysis			
Point	Device	Available Fault Current (A)	Standard Breaker Rating (A)
A	Utility Transformer	$15,418 \mathrm{~A}$	$25,000 \mathrm{~A}$
B	Main Service Co-gen MS-CG	$14,657 \mathrm{~A}$	$25,000 \mathrm{~A}$
C	Panelboard DP4-LCMECH-B	$10,014 \mathrm{~A}$	$14,000 \mathrm{~A}$

Electrical - Fault Current Study

Utility System
$50 \mu V A \quad \times / R=2.38$ (assumed)
$\frac{\text { Utility Transformer }}{1000 \mathrm{kVA} \text { Cassumed }}$
$z=5.8 \%, x / R=2.38($ Table 4)

- $Z_{u+\cdot} \left\lvert\,=\frac{\mathrm{kv} / \sqrt{3} \times 1000}{I_{s c}} \Omega=\frac{(0.480 \mathrm{~V})^{2} \times 10^{6}}{50,000 \mathrm{kvA}}=4.61 \mathrm{n} \Omega\right.$

$$
\begin{aligned}
& R_{u+i}=\text { Zutil } \cos \left(\tan ^{-1} \frac{x}{12}\right)=4.61 \cos \left(\tan ^{-1} 2.38\right)=1.79 \mathrm{~m} \Omega \\
& X_{u+1}=Z_{u+1} \sin \left(\tan ^{-1} \frac{x}{12}\right)=4.61 \sin \left(\tan ^{-1} 2.38\right)=4.25 \mathrm{~m} \Omega
\end{aligned}
$$

$$
\text { Rxfrmr }=\frac{k v^{2} \times \% 2 \times 10^{4} \times \cos \left(\tan ^{-1} \frac{v}{R}\right)}{k v A \times \operatorname{trm}}=\frac{(0.480 \mathrm{~V})^{2} \times 5.8 \times 10^{4} \times \cos \left(\tan ^{-1} 2.38\right)}{1000 \mathrm{kVA}}
$$

$$
=5.2 \mathrm{~m} \Omega
$$

$$
\begin{aligned}
X \times f r_{m r} & =K v^{2} \times \% 2 \times 10^{4} \times \sin \left(\tan ^{-1} \frac{x}{12}\right)=\frac{(0.480 v)^{2} \times 5.8 \times 10^{4} \times \sin \left(\tan ^{-12} 38\right)}{1000 \mathrm{kVA}} \\
& =12.3 \mathrm{~m} \Omega
\end{aligned}
$$

- Total impedance
$Z_{\text {total }}=Z_{\text {until }}+Z_{\text {xtrms }}=(1.79+j 4.25)+(5.2+j 12.3)=6.99+16.55 \mathrm{~m} \Omega$
- Iss $=\frac{\gamma_{\text {line }}-\text { neutral } \times 1000}{\left|Z_{\text {total }}\right|}=\frac{277 V \times 1000}{\sqrt{(6.99)^{2}+(06.55)^{2}}}=\begin{aligned} & 15,418 \mathrm{~A} \text { (9) } \\ & \text { point A. }\end{aligned}$
(B) Find fault at main distribution panel (mainservice ro-gen MS-CG)
- assume feeder from transformer through existing service to cogon panel is 70 ft . (Full set drawing of building unavailable since project inwles renovation of 3 levels)
- assmene also 4 sets of 4-\#1300 McM-3"c, THe cu in risid steelakn.

Table $1 \rightarrow R=3.85 \mathrm{~m} \Omega / 100 \mathrm{ft}$

$$
x_{L}=4.14 \mathrm{~m} / 100 \mathrm{ft}
$$

$R_{\text {conductor }}=\frac{L}{100} \times R \times \frac{1}{\text { \# of sets }}=\frac{70^{\prime}}{100} \times 3.85 \times \frac{1}{4}=0.674 \mathrm{~m} \Omega$ $X_{\text {conductor }}=\frac{L}{100} \times X_{L} \times \frac{1}{\# \text { of sets }}=\frac{70^{1}}{100} \times 4.14 \times \frac{1}{4}=0.725 \mathrm{~m} \Omega$

- $Z_{\substack{\text { cover } \\ \text { purl }}}=Z_{\text {syst }}+Z_{\text {feeder }}$

$$
=(6.99+16.55 \mathrm{~m} \Omega)+(0.674+j 0.725)=7.664+17.275 \mathrm{~g} \mathrm{~m} \Omega
$$

- $I_{s c}=\frac{V_{\text {ine-rental }} \times 1000}{Z_{\text {cosenpome }}}=\frac{277 \mathrm{~V} \times 1000}{\sqrt{(7,664)^{2}+(19.275)^{2}}}=\begin{gathered}14,659 \mathrm{~A} \mathrm{G} \\ \text { point B }\end{gathered}$
(C) Find fault at panel DP 4-LCMECH-B
panel DPU-LCMECH - B served by run of $4 \# 3 / 0$ THWCU. assume run is 120°.

$$
\left.\begin{array}{rl}
R=6.68 \mathrm{~m} \Omega / 100 \mathrm{ft} \\
X_{L}=4.22 \mathrm{~m} \Omega / 100 \mathrm{ft}
\end{array}\right\} \text { table } 1 .
$$

$$
=10,014 A \text { point } C \text {, panel PPY-LCMECH-13 }
$$

[^0]: *Numbers calculated with the RETScreen Clean Energy Project Analysis Software

[^1]: *electricity rate from Con Edison Service Classification No. 9 - Rate II - General - Large - Time of Day, New York City,

